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prevalent POAG/glaucoma by evaluating metabolomic profiles mea-
sured in either serum6–8, plasma9–11, aqueous humor12–15, tear16, and
optic nerve17 samples. However, these studies are limited by rela-
tively small sample sizes (the largest study included 211 cases and 295
controls7), focus on treated POAG cases9–11,13–18 which may result in
bias due to treatment, and use of convenience controls with other
eye conditions13–15,19,20. Additionally, the use of prevalent casesmay be
problematic for the discovery of changes related to early disease, as
consequences of advanced disease or treatment are likely to impact

circulating metabolite profiles in glaucoma. Our study included 599
incident cases and 599 matched controls in a nested case-control
study of pre-diagnostic circulating plasma metabolites from ~10
years before POAG diagnosis, and to confirm the findings, we eval-
uated the metabolomic data in prevalent glaucoma cases from the
UK Biobank.

Here, we show that higher levels of diglycerides and triglycerides
are adversely associated with incident POAG in three health profes-
sional cohorts with stronger associations for POAG with paracentral
visual field (VF) loss. We confirmed the adverse associations for gly-
cerides in a cross-sectional analysis performed in the UK Biobank.

Results
Study population—Nurses



and the inverse associations with cholesteryl esters and organic acids
and derivatives (which includes amino acids) were robust (FDR <



compared to peripheral VF loss21–23. Therefore, we separately eval-
uated the associations betweenmetabolite classes and POAG defined
by VF loss patterns (paracentral (Fig. 3a) versus peripheral VF loss
(Fig. 3b)). Of the 599 cases, VF loss patterns derived from Humphrey
visual field test were available in 509 cases. As shown in Fig. 3



BMI > 25 kg/m2 and those diagnosed closer in time to blood draw
(within a decade).

UK Biobank
To assess whether the associations observed in NHS/NHSII/HPFS
might alsobe observed in theUKBiobank,we conductedmetabolomic
analyses of the outcome of glaucoma, defined based on self-reported
glaucoma, use of glaucoma medications and ICD codes (2238 glau-
coma cases and 44723 non-cases). In general, glaucoma cases were
older, had more diabetes, and higher systolic blood pressure than
controls (Table 2).

In multivariable-adjusted analyses of individual metabolites
(Fig. 4; Supplementary Data 2), we observed that 6 TG metabolites
were nominally associated with higher glaucoma risk (p <0.05). Tyr-
osine (NEF <0.05), glucose (NEF <0.05), glutamine (NEF<0.2), and one
TG metabolite (NEF < 0.2) were also significantly associated with
higher glaucoma risk. Specific organic acids and derivatives, such as
acetate, 3-hydroxybutyrate, citrate, pyruvate, and lactate were inver-
sely associated with glaucoma (NEF < 0.05). Notably, data on glucose,
acetate, 3-hydroxybutyrate, citrate, pyruvate, and lactate were not
available in NHS/NHSII/HPFS; however, there were null associations
between tyrosine, valine, glutamine, and phenylalanine with POAG
(Supplementary Data 1).

Figure 5 shows results from evaluating metabolite classes in
glaucoma in the UK Biobank. Amino acids and TGs were positively
associated while ketone bodies were inversely associated with glau-
coma (FDR <0.05). Glycolysis-related metabolites were inversely
associated with glaucoma at FDR <0.2.

Discussion
Pre-clinical plasma metabolite profiling indicates that higher levels of
DGs and TGs are adversely associated with incident POAG in 3 health
professional cohorts with stronger associations for POAG with para-
central VF loss. The adverse associations for glycerides were confirmed
in a cross-sectional analysis performed in the UK Biobank. While this
study was the first to evaluate the relation between pre-diagnostic
plasma metabolites, the replication of our findings in a prevalent glau-
coma dataset supports a role for altered lipid regulation in glaucoma.

A systematic review5 identified 13 studies to date on the metabo-
lomics of open-angle glaucoma. Of these, three evaluated serum6,7,26,
and three evaluated plasma9–11 while others evaluated aqueous
humor12–15, tear27, and optic nerve17 samples. These studies have col-
lectively assessed ~140 different metabolites. Compared to existing
studies (where the largest study included 211 cases and 295 controls7),
our studywas unique in that the sample size inNHS/NHSII/HPFSwas the
largest to date (599 cases and 599 controls), did not use a convenience
control sample (e.g., those with cataract or other non-glaucoma eye
conditions) and importantly, evaluated pre-diagnostic plasma collected
a mean of 10.3 years before POAG diagnosis which is unaffected by



glaucoma with hyperlipidemia as well as hypertriglyceridemia (OR =
1.42; 95%CI 1.04, 1.93; based on pooling of 4 studies). Our study con-
fi
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glaucoma outcome definition described above. In addition, UK Bio-



future analyses given the hypothesis-generating aspect of this study.
All statistical tests were two-sided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from the UK Biobank cannot be shared per our Material Transfer
Agreement. UK Biobank data requests can be made directly to the UK
Biobank via https://www.ukbiobank.ac.uk/enable-your-research/
apply-for-access. Data from the health professional cohorts (NHS,
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